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SUMMARY

Bacteria have a range of distinct immune strategies that provide pro-
tection against bacteriophage (phage) infections. While much has
been learned about the mechanism of action of these defense strate-
gies, it is less clear why such diversity in defense strategies has evolved.
In this review, we discuss the short- and long-term costs and benefits
of the different resistance strategies and, hence, the ecological condi-
tions that are likely to favor the different strategies alone and in com-
bination. Finally, we discuss some of the broader consequences, be-
yond resistance to phage and other genetic elements, resulting from
the operation of different immune strategies.

INTRODUCTION

Bacteria are under constant threat by viruses (bacteriophages
[phages]) and have evolved multiple immune strategies to

combat phage infections (Fig. 1). Phage immune mechanisms can
act at different stages of the phage life cycle, including receptor
binding, genome injection into the host cell, and intracellular ge-

nome replication. First, immunity by surface modification results
from masking, mutation, or loss of host receptor proteins, which
serve as entry points for the phage. Second, the host can block
phage DNA injection or phage replication, known as superinfec-
tion exclusion (Sie). Third, injected phage genomes can be cleaved
by at least three distinct intracellular immune mechanisms: re-
striction-modification (RM), the CRISPR-Cas (clustered regu-
larly interspaced short palindromic repeat–CRISPR-associated
gene) system, and prokaryotic Argonaute (pAgo). Finally, bacteria
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can trigger a suicide reaction upon phage infection, known as
abortive infection (Abi), resulting in infection failure. The molec-
ular mechanism of these immune strategies has been the subject of
several excellent reviews (see references 1–3) and are reiterated
below. Below, we discuss how ecological selection pressures have
driven the evolution of diverse bacterial immune mechanisms and
the broader ecological and evolutionary consequences of their ex-
istence beyond resistance to viruses and other mobile genetic ele-
ments. In this review, we use the terms resistance, defense, and
immunity interchangeably.

DIFFERENT RESISTANCE MECHANISMS OF BACTERIA

Surface Modification

The initial step of phage infection is the adsorption of a phage
ligand (usually tail protein) to specific host surface receptors. To
prevent phage adsorption, bacteria can either (i) lose the receptor
or downregulate its expression, (ii) mutate the receptor, or (iii)
block or mask the receptor.

Receptor loss is commonly seen under laboratory conditions,
especially when phages use motility organelles, such as the flagel-
lum or the pilus, to enter the host cell (4, 5) or receptors that are
not essential under laboratory conditions, such as the LamB re-
ceptor, which is necessary for maltose uptake and hence is dis-
pensable when bacteria are grown in LB medium (6). The loss of
these organelles leads to complete resistance but may be associated
with a large fitness cost in a natural environment (see below).

Unlike the other defense strategies described below, many ex-
amples of resistance mediated by surface modification are the re-
sult of mutation and selection rather than an inherent system that
confers or predisposes bacteria toward resistance. However, there
are examples where bacteria can temporarily downregulate the
expression of phage receptors, which may have evolved in re-
sponse to phage-imposed selection. Some bacteria alter surface
receptors through “phase variation,” a process in which bacteria
vary protein expression depending on environmental conditions
(2, 7). By doing so, surface receptors are produced only under
specific conditions or upon a specific stimulus so as to limit the
risk of phage infection. In addition, some bacteria use quorum
sensing to regulate phage receptor expression (8, 9). For example,
Escherichia coli can reduce the expression of LamB, the receptor
for phage �, in response to quorum sensing signals (8). A recent

study on the fish pathogen Vibrio anguillarum and its phage,
KVP40, showed that quorum sensing is used by bacteria to alter-
nate between two different phage protection mechanisms. At
low population densities, Vibrio shows high-level expression of
OmpK, the main receptor for phage KVP40, but is protected
against phage infection by increased biofilm formation. As popu-
lation densities increase, however, OmpK expression is down-
regulated through quorum sensing regulation, which renders
Vibrio almost fully resistant to the phage (9).

Where receptor loss is too costly, receptor mutation, blocking,
or masking may be favored by selection. Evidence for frequent
receptor mutation follows from increases in the numbers of non-
synonymous mutations in phage receptors (10) and adaptive re-
ceptor mutations in response to phage in natural populations
(11); a study on the human pathogen Vibrio cholerae showed that
in response to phage, bacteria acquired point mutations in the
outer membrane porin OmpU, the receptor for the lytic phage
ICP2 (11). Many phages of Gram-negative bacteria use outer
membrane lipopolysaccharides (LPSs) to enter the host cell,
which are macromolecules consisting of a lipid and a polysaccha-
ride group. Modification of LPS as a response to phage infection
has been observed for a range of bacterial species, including E. coli
(12) and Pseudomonas fluorescens (13).

Receptor blocking or masking occurs when bacterial molecules
interfere with phage adsorption. For example, Staphylococcus au-
reus produces a molecule (protein A) that likely prevents phage
adsorption by masking of the phage receptor (14). E. coli uses the
lipoprotein TraT, encoded by the F plasmid, to modify the con-
formation of the OmpA protein, which is a common receptor for
E. coli phages (15). The production of extracellular matrices can
provide protection against phages when they form a physical bar-
rier between the phage and the receptor. A well-known example is
the production of alginate by pseudomonads. This polysaccharide
causes a mucoid colony morphology that is associated with phage
resistance (16).

Superinfection Exclusion

Superinfection exclusion (Sie) prevents the entry or replication
of phage DNA, but as its name suggests, it is a resistance mech-
anism encoded by the infecting phage. Sie is commonly
achieved by interfering with the injection or replication of a

FIG 1 Bacterial immune mechanisms. Letters indicate protein components involved in the immune mechanism (M, methylase; R, restriction enzyme; C1/2,
Cas1 and Cas2; C, Cas effector-nuclease complex; A, prokaryotic Argonaute enzyme).
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superinfecting phage through alterations to the cell surface or
repression of replication, both of which are discussed below
(reviewed in reference 1).

Relatively well-studied Sie systems include the cor gene, ex-
pressed by E. coli prophages F80 and N15 (17). This gene blocks
DNA injection of related superinfecting phages by inactivating the
ferrichrome uptake protein FhuA, which serves as a phage recep-
tor (18). Another Sie system is the gp15 gene carried by the tem-
perate E. coli phage HK97, which blocks the DNA entry of the lytic
phage HK97 and the closely related phage HK95, presumably by
the insertion of the Gp15 protein in the E. coli inner membrane,
where it interacts with phage tail proteins (19). Further Sie systems
include the ltp gene of the Streptococcus thermophilus temperate
phage TP-J34. This gene encodes a lipoprotein that inhibits DNA
release into the host cell during infection with a lytic phage, pre-
sumably by targeting the phage-encoded tape measure protein
(TMP), which is necessary for channel formation to allow DNA
passage into the cell (20, 21).

Pseudomonas aeruginosa prophage D3 mediates Sie through
modification of the O-antigen of LPS on the host surface (so-
called “seroconversion,” as this modification changes the host se-
rotype). Many phages require the O-antigen to attach to the host
cell and establish a successful infection, which is inhibited by this
Sie mechanism (22). This is analogous to the mechanism of an-
other phage-encoded protein (twitching-inhibitory protein
[Tip]) that modifies the type IV pilus on the surface of P. aerugi-
nosa. As many Pseudomonas phages require type IV pili for suc-
cessful infection, this protein may represent a general Sie strategy
(23, 24).

Although the majority of Sie systems appear prophage encoded,
they are also carried by some lytic phages, such as the E. coli phage
T4, which encodes one of the best-characterized Sie systems to
date. This Sie system consists of the Immunity (Imm) and Spackle
(Sp) proteins, which act independently and through distinct
modes of action. The Imm protein blocks the translocation of
phage DNA into the cytoplasm by altering the conformation of the
DNA injection site on the host membrane. Sp is a membrane
protein that inhibits the activity of T4 lysozyme that is con-
tained in the phage tail and functions in creating holes in the
peptidoglycan layer to facilitate phage DNA injection (re-
viewed in reference 25).

Apart from mechanisms that interfere with phage DNA injec-
tion, prophages can also confer repressor-mediated immunity.
Repressor proteins silence phage genes in order to maintain cell
viability during the lysogenic life cycle (26). These repressors bind
specific DNA sequences located in intergenic regions on the phage
genome, and phages vary with respect to the specificity of repres-
sor-DNA interactions (27). A prophage can provide immunity to
a phage that carries a repressor with the same specificity, as this
will result in the blocking of the lytic cycle of the superinfecting
phage. The phage may also capture repressor genes from an unre-
lated phage, presumably in order to confer immunity to superin-
fection (27).

Restriction-Modification

Restriction-modification (RM) systems are diverse and wide-
spread immune mechanisms that function by cleaving nonself,
unmodified DNA, while modified self DNA is left untouched. The
majority of RM systems consist of two components: an enzyme
that methylates DNA (methyltransferase [MT]) and an enzyme

that cleaves unmethylated DNA (restriction endonuclease [RE])
by recognizing specific DNA sequences (restriction sites). Self-
cleavage of the host genome is prevented by MT-catalyzed meth-
ylation of chromosomal restriction sites. Based on subunit com-
position and biochemical characteristics such as protein structure,
restriction site recognition, cofactor requirements, and substrate
specificity, RM systems are classified into four different types
(types I to IV) (28). Type I systems encode a protein complex that
contains restriction (HsdR), modification (HsdM), and specificity
(HsdS) subunits. Unmodified target sequences trigger the DNA
translocation activity of HsdR, while HsdS remains bound to the
recognition sequence, leading to loop formation in the DNA.
Cleavage occurs when two complexes collide, and the cleavage site
can therefore be tens of thousands of base pairs away from the
actual recognition site. The majority of the type II RM systems
contain separate REs and MTs. Type II REs are typically ho-
modimers or homotetramers that cleave DNA at or very close to
their recognition site. These type II REs represent the restriction
enzymes that became a crucial tool for DNA analysis and cloning
(29) and are therefore by far the best-studied REs. The type III RM
systems encode a protein complex that is usually a heterotrimer of
the RE and MT (Res1Mod2) (30), and cleavage requires two rec-
ognition sites that are inversely oriented with respect to each
other. Type IV systems are very different from the others, as they
cleave only DNA sequences that have been modified (methylated,
hydroxymethylated, or glucosyl-hydroxymethylated) and appear
to have evolved independently. Based on the sequence homology,
codon usage, and GC content of RM systems, it has been hypoth-
esized that high levels of horizontal gene transfer (HGT) have
contributed to the evolution and spread of RM systems (31–33).
The effectiveness of RM systems in host protection against phage
infection has been demonstrated in various studies reporting 10-
to 108-fold protection against phage infection (reviewed in refer-
ence 34). Interestingly, the expression of many RM systems is
phase variable (35–38), which has important evolutionary impli-
cations, which are discussed below.

CRISPR-Cas Systems

CRISPR-Cas systems are the adaptive immune systems of bacteria
and archaea. Their molecular mechanism has been extensively
reviewed elsewhere (39–43). Here we briefly explain the mecha-
nism of these different variants of the system.

CRISPR-Cas systems consist of CRISPR-associated (cas) genes
and CRISPR loci. cas genes encode the protein machinery that
carries out the immune response. CRISPR loci consist of invad-
er-derived sequences separated by direct repeats and provide a
genetic memory of previous infections. CRISPR-Cas systems
are extremely diverse and are currently classified into 2 distinct
classes, 6 types, and 16 subtypes based on phylogeny, cas gene
composition, and CRISPR sequences (44, 45). Despite differ-
ences, all systems rely on the same basic principle of spacer acqui-
sition from foreign DNA followed by integration of these se-
quences into CRISPR loci on the host genome (adaptation). Next,
CRISPR loci are transcribed, and the resulting RNA molecule is
processed to generate mature CRISPR RNA (crRNA), which
forms a complex with one or more Cas proteins (expression).
Finally, crRNA-Cas complexes bind and cleave complementary
nucleic acids (in some cases, this step involves additional Cas nu-
cleases), resulting in host immunity (interference).

Class 1 CRISPR-Cas systems. Class 1 systems encode multisub-
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unit crRNA-Cas complexes and can be further subdivided into
type I, III, and IV CRISPR-Cas systems. The latter awaits molec-
ular characterization. Type I systems are characterized by the nu-
clease/helicase Cas3 and encode a Cascade (CRISPR-associated
complex for antiviral defense)-like complex (46). Type III systems
are typified by the presence of Cas10. In agreement with the phy-
logenetic relationships between type I and type III systems (44, 47,
48), their associated multisubunit crRNA-Cas complexes share
key structural features (39, 49–51). Adaptation in type I systems
requires only Cas1 and Cas2 (52), which form a heterotetrameric
complex that binds to the leader end of the CRISPR array to cat-
alyze the integration of spacers (53–57). During “expression,” the
CRISPR is transcribed, followed by Cas6-mediated cleavage, to
yield mature crRNA molecules (46, 58). Cas6 is a subunit of Cas-
cade, which consists of multiple Cas proteins and a single crRNA
molecule (59). During the “interference” stage, Cascade binds the
genome of an infecting parasite and marks it for destruction by the
Cas3 effector nuclease (60–65). The affinity of target DNA binding
is strongly increased if the target sequence (protospacer) is flanked
by a protospacer-adjacent motif (PAM) (60, 66, 67). As the PAM
is absent from the CRISPR loci on the host genome, it serves to
avoid autoimmunity problems (68). Some type III systems target
both single-stranded RNA and transcriptionally active DNA (69–
77). This RNA cleavage is important when DNA cleavage is de-
layed, for example, due to mismatches or because the target gene is
expressed late during the phage life cycle (75). Type III-A systems
also have a PAM-independent self/nonself discrimination mech-
anism, which relies on the inhibition of CRISPR interference
when target sequences are flanked by CRISPRs (78), which avoids
self-targeting of CRISPR loci on the host genome.

Class 2 CRISPR-Cas systems. Although Class 2 systems are less
common than class 1 systems (44, 79), they have received much
more attention recently due to their application in genome edit-
ing. Class 2 systems are uniquely suited for this application since a
single protein carries out all functions of the multisubunit crRNA-
Cas complexes of class 1 systems. Class 2 systems can be subdi-
vided into type II systems (44), which encode the Cas9 enzyme
that is presently widely used for genome editing (80, 81); type V
systems, which encode the Cpf1, C2c1, or C2c3 effector enzyme
(44); and type VI systems, which encode the C2c2 effector enzyme
(45). Type II systems require Cas1 and Cas2 for spacer acquisition
as well as Cas9 for PAM specificity (82). The expression stage
requires a trans-encoded crRNA (tracrRNA) molecule that pairs
with pre-CRISPR RNA repeat sequences, which, in the presence of
Cas9, triggers RNase III-mediated cleavage in the resulting stretch
of double-stranded RNA (83). The tracrRNA remains bound to
the processed crRNA and forms an essential component of the
tracrRNA-crRNA-Cas9 effector complex (84). During interfer-
ence, the effector complex binds the double-stranded target mol-
ecule (85), followed by PAM-dependent Cas9-mediated cleavage
(85). Type V and VI systems do not encode Cas9, and their mo-
lecular details of expression and interference are distinct from
those of type II systems. For example, Cpf1 and C2c1 lack a re-
quirement for tracrRNA during the expression and interference
stages (45, 86). Cpf1 also has different PAM requirements and
yields different cleavage products (87).

pAgo

Argonaute (Ago) proteins are present in all domains of life and are
key enzymes of the RNA interference (RNAi) pathway in eu-

karyotes (88). In eukaryotes, Ago plays a key role in a range of
cellular functions, including gene regulation and host defense
(88). Ago proteins are part of the PIWI (P-element-induced
wimpy testis) protein superfamily. In addition to the PIWI do-
main, Ago proteins contain the N-terminal domain (N domain),
the PAZ (PIWI-Argonaute-Zwille) domain, and the MID (mid-
dle) domain, and these domains are linked together by two link-
ers, L1 and L2. Eukaryotic Ago proteins interact with RNA mole-
cules of well-defined lengths (ranging from 20 to 30 nucleotides
[nt], varying between different paralogs), and these RNA mole-
cules function as guides for Ago to bind (and sometimes cleave)
cRNA sequences (RNA-guided RNA interference).

The discovery that Ago is also found in prokaryotic genomes
(89, 90), together with the finding that prokaryotic Ago (pAgo)
often colocalizes with other defense genes, led Makarova and co-
workers to hypothesize that pAgo comprises a prokaryotic defense
system (91). Prokaryotes have both long pAgo proteins, which
carry the same domains as their eukaryotic counterparts, and
short pAgo proteins, which consist of only the MID and PIWI
domains (92). Of the long pAgo enzymes, only 28% are predicted
to be catalytically active, and inactive enzymes often colocalize
with other nucleases that may carry out target cleavage (92). In-
terestingly, many pAgo proteins preferentially bind DNA guides
rather than RNA guides (93–96), although pAgo from Rhodobac-
ter sphaeroides was found to associate with RNA guides (97). These
guides are typically 15 to 19 nt long and have a well-conserved 5=
nucleotide (96, 97). Both the DNA-guided pAgo proteins from
Thermus thermophilus and Pyrococcus furiosus and the RNA-
guided pAgo protein from R. sphaeroides were reported to inter-
fere with plasmids (96–98), and Ago deletion mutants resulted in
increased plasmid gene expression (97) and plasmid transforma-
tion efficiencies (96, 98). In vitro analyses revealed that both the P.
furiosus and T. thermophilus pAgo proteins carry out DNA-guided
DNA cleavage (96, 98). DNA-guided T. thermophilus pAgo, but
not P. furiosus pAgo (98), could also cleave cRNA in vitro (96), but
the enzyme does not appear to interfere with mRNA in vivo (99).
Like P. furiosus pAgo, Methanocaldococcus jannaschii pAgo is also
unable to cleave cRNA (100). Hence, a picture emerges in which
pAgo enzymes are generally (but not always) guided by short DNA
molecules and typically interfere with cDNA by either pAgo-me-
diated cleavage or, possibly, the recruitment of additional nu-
cleases if pAgo lacks catalytic residues. The enzymatic activity
seems to be directed primarily against plasmids. Many key ques-
tions remain concerning the mechanism of pAgo, most promi-
nently how the enzymes discriminate self from nonself and how
guide DNA molecules are acquired from plasmid targets.

Abortive Infection

Abortive infection (Abi) systems cause programmed cell death of
an infected bacterium, thereby preventing phage replication and,
thus, phage spread to neighboring uninfected cells. As such, abor-
tive infection is essentially an altruistic response to phage infec-
tion; the infected cell will die, but the rest of the bacterial popula-
tion is likely to survive as phage spread is aborted (101). Several
Gram-negative strains carry Abi systems, of which the rapid II
(rII) exclusion (Rex) system found in phage �-lysogenic E. coli
strains is probably the most well-characterized one (1). Rex sys-
tems consist of two proteins, RexA and RexB, both of which are
needed for phage protection. Upon infection, phage protein-DNA
complexes are produced as replication intermediates that activate
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the intracellular sensor molecule RexA. Subsequently, RexA acti-
vates the membrane-anchored ion channel protein RexB. RexB
activation causes a sudden drop in the cellular ATP level, thereby
aborting ATP-dependent processes, including virus replication
(102). Another Abi system is the late inhibitor of T4 (Lit) system,
which is found in a defective prophage integrated into the genome
of the E. coli K-12 strain. Upon activation by phage protein, Lit
cleaves a translation elongation factor, thereby inhibiting protein
synthesis (102, 103). This finally leads to abortion of virus infec-
tion and bacterial cell death. Abi systems are highly abundant in
Gram-positive bacteria, in particular in the lactococci, where they
are commonly encoded on plasmids (101, 104). To date, over 23
lactococcal Abi systems have been identified, all of which are
thought to interfere with different steps of the phage replication
cycle (1, 101). Recent studies have shown that certain toxin-anti-
toxin (TA) systems can also act as Abi systems upon activation by
phage infection (104–106). For example, the plant-pathogenic
bacterium Pectobacterium atrosepticum encodes the TA system
ToxIN, which aborts phage infection. This mechanism functions
through the action of the RNA antitoxin ToxI and the endoribo-
nuclease toxin ToxN, whereby ToxI neutralizes ToxN under nor-
mal conditions (101, 107). However, upon phage infection, host
gene expression is arrested, and as the antitoxin is less stable than the
toxin, ToxI levels drop more rapidly than do ToxN levels. This causes
ToxN activation, leading to the induction of cell death. Abi-inducing
TA systems have also been identified in E. coli to prevent infection
with phage T4 (108) and phage P1 (109). As TA systems are extremely
widespread in bacteria, and only a few have been studied in detail, it is
anticipated that many more TA systems that function through an Abi
mechanism will be identified in the future.

SELECTIVE FORCES DRIVING THE EVOLUTION OF IMMUNE
MECHANISMS

Why did bacteria evolve these different immune mechanisms? De-
spite the progress in unraveling the mechanism of bacterial de-
fenses, we know relatively little of the selection pressures that drive
their evolution. Studying the evolutionary ecology of immune
mechanisms is important if we are to understand, predict, and
manipulate bacterial adaptation to phage infection.

Is More Immunity Best?

Is it simply the case that having multiple defense mechanisms is
best, analogous to vertebrate immune systems that are composed
of both innate and adaptive mechanisms? Consistent with this
idea, RM and CRISPR-Cas systems frequently cooccur (33), and
their combination results in increased levels of immunity (110)
and more rapid spacer acquisition (111). Moreover, immune
mechanisms may even interact synergistically. For example, tran-
scriptome analyses show that pAgo deletion impacts the expres-
sion levels of CRISPR-Cas components (99), suggesting that these
systems may show genetic interactions, and synergistic interac-
tions between Abi and CRISPR systems have been suggested based
on data from in silico analyses (112).

However, if it is better to have multiple mechanisms, why is it
that not all bacteria have all mechanisms? There are two possibil-
ities: either not all mechanisms have evolved in all organisms yet
or immune mechanisms are associated with a fitness cost that can
select against the maintenance of the system. We can rule out the
first explanation, since there are many examples of the presence
and absence of mechanisms in closely related bacteria where im-

mune mechanisms have been gained and lost or inactivated (see,
for example, references 113–116). Fitness costs associated with
immune mechanisms are therefore a more probable explanation
as to why not all bacteria have all mechanisms.

Fitness Costs of Immunity

For obvious reasons, host immunity confers a clear selective ad-
vantage in the presence of parasites. However, investment in im-
munity is also typically associated with fitness costs and can there-
fore be selected against in the absence of parasites (117). Such
costs of resistance appear to be very general among both pro-
karyotes and eukaryotes (reviewed in references 118 and 119).
Fitness costs associated with immune systems can arise due to
immunopathology (e.g., autoimmunity); due to an allocation of
resources to defense, which would otherwise be used to increase
reproductive success; or due to pleiotropic effects of resistance
that decrease host fitness, as is often the case for surface modifica-
tion (120).

Surface modification. Surface modifications are typically asso-
ciated with a constitutive fitness cost (i.e., a fixed cost that is inde-
pendent of the presence or absence of phage). The cost of losing
surface receptors, such as the flagellum or pilus, is likely to be
lower in laboratory settings, where nutrients are readily available
and broth is continuously mixed, than in natural environments.
For example, pili and flagella are associated with key bacterial
functions such as movement (swimming, swarming, and twitch-
ing) and biofilm formation (121), and the loss of these receptors
can have a high competitive cost in spatially structured and re-
source-limited environments (122, 123). Moreover, modification
of surface receptors such as LPS can also result in a reduction of
fitness in some contexts (120).

Superinfection exclusion. Fitness costs associated with Sie
mechanisms have not been studied in great detail. One P. aerugi-
nosa prophage was found to encode a Sie system that had a subtle
effect on host motility and was cost-free during growth in soil and
during infection of a Caenorhabditis elegans host (124). Prophage
integration into the host genome may be associated with a constitu-
tive fitness cost if host genes are disrupted (e.g., tRNA genes), but this
cost may be compensated for by phage-borne tRNA genes and other
accessory genes that confer a benefit to the host (125, 126).

Restriction-modification. A recent study investigated fitness
costs associated with RM and found that increased levels of SOS
responses were elicited, suggestive of autoimmunity effects (127).
Furthermore, the fitness cost of carrying RM systems was mani-
fested under conditions of low but not high resource levels (127),
which is often observed for parasite resistance (123, 128). In agree-
ment with autoimmunity, bacterial genomes harboring RM sys-
tems generally have a decreased frequency of the cognate restric-
tion site (129, 130). This phenomenon, named restriction site
avoidance or palindrome avoidance, is even more pronounced in
host than in phage genomes (129). Palindrome avoidance itself may
also be associated with a fitness cost to the bacterium, as it could affect
gene functioning through mutations. In addition, some (but not all)
RM systems are extremely energy-consuming, with RE translocation
over the DNA consuming 1 ATP per base pair (131). Whether ATP
consumption provides a benefit (e.g., through more rapid detection
or destruction of phage genomes) is unknown. Phase-variable ex-
pression of many RM systems may help to reduce the associated fit-
ness costs of carrying these systems.

CRISPR-Cas. The class 2 CRISPR-Cas system of S. thermophi-
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lus was found to be associated with both a constitutive cost of
carrying the system as well as an inducible cost of using the system
(132). An inducible cost of mounting a CRISPR immune response
was also detected in P. aeruginosa (133). The inducible cost is
consistent with the induced expression of CRISPR-Cas adaptive
immune systems upon infection (134–136). A constitutive fitness
cost of CRISPR-Cas systems could select for a loss of the systems in
the absence of parasites (137). At present, the mechanistic basis for
the observed fitness cost associated with the CRISPR-Cas system is

unclear but may be related to autoimmunity (138–144) or allocation
of resources to defense that would otherwise be invested in growth.

Abortive infection. Abi was found to be associated with a consti-
tutive cost of carrying the system (145), but the mechanistic basis of
this cost is unknown. Moreover, there are inevitable individual costs
associated with suicidal behavior following the induction of the Abi
system.

Costs of Resistance Can Help To Explain Diversity in
Immune Mechanisms
One important feature of immune mechanisms is whether they
are constitutive (always active) or inducible (triggered upon infec-
tion) (Fig. 2). Inducible defenses are typically associated with an
induced cost of resistance, whereas constitutive defenses are asso-
ciated with a fixed cost. As a consequence, the force of infection is
predicted to be a key ecological factor driving the evolution of
these different immune strategies, since the overall cost of an in-
ducible resistance strategy will depend on the frequency of infec-
tion (146). Recently, it was demonstrated that the force of infec-
tion can tip the balance from CRISPR immunity to surface
modification immunity (133), and this was explained by the
CRISPR-Cas system and surface modification being associated
with inducible and fixed costs of resistance, respectively. Hence,
depending on the risk of infection, either the CRISPR system or
surface modification is favored (Fig. 3). Consistent with the idea
that the CRISPR system is better when the risk of infection is low,
thermophiles tend to have more and longer CRISPRs (147, 148)
and have lower host and parasite population densities (149). Sim-
ilar effects are expected in the context of other immune mecha-
nisms that have inducible costs.

How Does Symbiont Diversity Contribute to Immune
Diversity?
A second factor that is likely to be important in the evolution of
immune strategies is the level of diversity in mobile genetic ele-

FIG 2 Four-dimensional space defined by the four axes that capture different
features of immune mechanisms is sufficient to explain the existing diversity of
immune mechanisms in nature. The ecological factors indicated drive the
evolution of the feature indicated on the corresponding axis. Details are pro-
vided in the text.

FIG 3 The force of infection is an important determinant of the relative fitness associated with CRISPRs and surface modification (SM). In the absence of phage
or at a low force of infection, CRISPRs are favored over SM, since the latter is associated with a fixed cost of resistance. At high phage exposure, SM is favored over
the CRISPR, because the latter is associated with an inducible cost of resistance that increases with an increasing force of infection. Empirical support for this was
reported previously (133).
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ments (here broadly referred to as symbiont diversity). Diversity
of symbionts may drive diversity of host immune mechanisms in
at least two ways. First, parasite diversity can drive the evolution of
a division of labor, whereby different immune mechanisms coex-
ist in the same bacterium but each one is effective against different
parasites. Anecdotal evidence suggests that this may be the case.
For example, surface modification is generally more effective
against phages than plasmids, although mucoid phenotypes were
found to confer protection against a virulent plasmid (150). The
RM and CRISPR-Cas systems can target both phages and plasmids
(76, 151–154), and pAgo appears to predominantly target plas-
mids (96), while Abi is typically induced by phages. Second, sym-
biont diversity is likely to also impact the evolution of stand-alone
immune strategies, in particular along the innate-versus-adap-
tive-immunity axis and the specific-versus-nonspecific-immunity
axis (Fig. 2). Common wisdom suggests that an adaptive immune
system is particularly beneficial if a host is exposed to an unpre-
dictable range of different parasites, since it allows the acquisition
of immunity to all these parasites. Exposure to many parasites
could also select for nonspecific immune mechanisms (Fig. 4);
however, such indiscriminate, generalized immune strategies are
likely to interfere with host-mutualist interactions (e.g., acquisi-
tion of plasmids that encode antibiotic resistance). Hence, the
presence of mutualists may impose selection on the evolution of
specific versus nonspecific defenses (Fig. 5) (see the section on
mutualists, below).

Diverse pathogens: intraspecific diversity. Genetic diversity in
phage populations is predicted to drive the evolution of general-
ized defense, since phage mutants readily evolve to overcome spe-

cific defenses (137, 149). For example, it has been shown that
phage can rapidly evolve to overcome CRISPR-Cas-mediated im-
munity by point mutation, resulting in invasion by surface mu-
tants (155, 156). However, phage was unable to evolve infectivity
in bacterial populations with high levels of CRISPR allele diversity
(156). Yet, the outcome may depend on the relative levels of phage
and host genetic diversities; the diversity-generating benefit of
CRISPR-Cas may be more limited at increased levels of phage
diversity (149), which may therefore favor more broad-range
(nonspecific) defenses.

RM systems provide nonspecific immunity but are also prone
to phage evolving to overcome resistance, which typically occurs
through an “accidental” modification of the phage genome before
cleavage by the restriction enzyme. To deal with rapid phage evo-
lution, some RM systems also generate diversity in the specificity
subunits through recombination (157, 158). As with CRISPRs,
this diversity-generating property of these RM systems may limit
the evolution of phage to overcome host resistance. In addition,
phase-variable expression of RM systems (35–37) may also help to
limit the evolution of escape phage, since infection of a bacterial
clone that has the RM system switched off will result in phage
progeny that are not modified and therefore subject to RM of
related bacteria in the population.

Some forms of broad-range (nonspecific) defense, such as sur-
face modification by receptor loss, seem harder to overcome by
phage, but even then, phage can evolve infectivity against initially
resistant hosts through the recognition of novel receptors (6).
Some phages even carry mechanisms that specifically generate di-
versity in genes involved in host receptor recognition (159, 160).

FIG 4 Although empirical support is currently lacking, it may be the case that increasing phage diversity can select for broad-range innate immune mechanisms,
such as RM, over specific adaptive immune systems, such as the CRISPR-Cas system. While the CRISPR system is extremely effective if there is low genetic
variation in the phage population, theory predicts that the system becomes less effective if the host is exposed to a phage population with high levels of genetic
diversity (149).
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These diversity-generating retroelements (DGRs) function
through a reverse transcriptase-mediated process that introduces
adenine-specific substitutions in a gene that encodes a distal tail
fiber protein. The DGR allows the phage to rapidly adapt to the
rapidly changing host surface structures associated with phase
variation (159, 160). Similar DGRs have since been discovered in
a range of phages (161) and in archaeal viruses (162).

Diverse pathogens: interspecific diversity. While intraspecific
diversity may be neutralized by a sufficiently high diversity of
host resistance alleles, interspecific diversity (i.e., many differ-
ent viruses) is likely to select for broad-range innate immune
mechanisms, such as RM, Abi, and Sie, which typically provide
protection against a range of phages (124, 163) (Fig. 6). Surface
modification can also provide broad-range immunity against
multiple phages, but the range of immunity depends on the type of
modification and the phage receptors involved; for example, a
point mutation in a receptor is likely to be associated with a lower
fitness cost than the complete loss of the same receptor but is also
more likely to provide relatively narrow-range resistance against a
single or few phage species compared to receptor loss. In agree-
ment with this, evolution of broad-range immunity has been
shown to be more costly than narrow-range immunity (164), but
the mechanistic basis of immunity in these experiments was not
assessed. In some cases, surface modification-based resistance
against one phage can increase susceptibility to other phages, as is
the case for the cyanobacterium Prochlorococcus (165).

The benefit of the CRISPR-Cas system in the face of diverse
viruses is unclear. On the one hand, an adaptive immune system
allows a host to adapt to many different threats. On the other
hand, the specificity of adaptive immune systems means that there
is little cross-resistance. Theory and metagenomics data suggest
that in the context of two different viruses, CRISPR-Cas systems
may be associated with selective sweeps in host populations if a

single host genotype acquires resistance against two phages that
are present in the environment (166, 167). Consistent with theory
(167, 168), experiments suggest that multiple phages prolong
CRISPR-virus coevolution (144). Furthermore, it was found that
viruses can escape CRISPRs through recombination (144, 169).

Mutualists. Apart from inter- and intraspecific parasite diver-
sity, the relative importance of mutualistic DNA elements is also
likely to impact the relative benefits of different immune strate-
gies. For example, accessory genes carried by plasmids can confer
a fitness benefit to the host (170–173), and specific immune mech-
anisms, such as the CRISPR-Cas system or pAgo, which can selec-
tively evolve immunity against parasites but not mutualists, are
expected to be favored over broad-range defenses such as RM
(174), which can form an important barrier for gene transfer (175)
(Fig. 6). However, phase variation of RM systems may allow the
uptake of beneficial DNA by bacteria in which the RM system is
switched off (35). That said, there is some evidence that even the
CRISPR-Cas system may restrain horizontal gene transfer. First,
both in the laboratory and in nature, bacteria evolve CRISPR im-
munity against plasmids (76, 154), but this may be due to the fact
that plasmids can act as parasites. Second, correlational studies
demonstrate that the CRISPR-Cas system limits horizontal gene
transfer of antibiotic resistance genes (176). It has been suggested
that species can lose CRISPR-Cas systems under conditions where
horizontal gene transfer is important (reviewed in reference 177).
However, a recent bioinformatics analysis of �1,300 genomes
failed to detect any clear effect of CRISPRs on rates of horizontal
gene transfer (178).

Impact of Spatial Structure on Evolution of Immune
Mechanisms

Apart from phage abundance (force of infection), phage diversity,
and the relative importance of plasmids, one further ecological

FIG 5 Mutualists (e.g., plasmids that confer a fitness benefit to the bacterial host) can select against immune mechanisms (177). If both mutualists and parasites
are present (e.g., plasmid and phage [left] or beneficial and harmful plasmids [right]), CRISPRs and pAgo may be beneficial since their specificity allows bacterial
hosts to specifically acquire resistance against the parasite. Empirical data to support this idea are currently lacking.
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factor that is key for host-parasite interactions and the evolution
of immune mechanisms is spatial structure (Fig. 2). Spatial struc-
ture increases the likelihood that neighboring individuals are
clone mates, which in turn affects selection for different immune
strategies. Most immune strategies confer an individual benefit,
but Abi is a clear exception, since it protects neighboring bacteria
at the expense of the individual expressing that trait. Theory sug-
gests that altruistic behaviors (i.e., individually costly but group
beneficial) such as Abi are likely to evolve when altruism prefer-
entially benefits individuals who share the same altruism genes
(179, 180). Studies using an artificially engineered suicide system
in E. coli (181) and the naturally occurring E. coli Abi system Lit
(145) show that spatial structuring is indeed needed for abortive
infection systems to evolve, with the latter also showing that levels
of mixing that are too low may prevent the evolution of abortive
infection due to the absence of parasite spread (and thus epidem-
ics) under these conditions (145). These findings were largely con-
firmed for the well-known E. coli Rex system (182), and this study
also showed that abortive infection is likely to evolve even when
genetic similarity between neighboring strains is relatively low, as
long as the cost for abortive infection is also low (182). Apart from
Abi, the evolution of other immune mechanisms may also be sub-
ject to spatial structure. Since spatial structure is an important
factor for the evolution of lysogeny (183), it will also, indirectly,
impact the evolution of superinfection exclusion, which is en-
coded by phages.

CONSEQUENCES OF OPERATION OF DIFFERENT
MECHANISMS

While it is clear from these studies that ecology affects the evolu-
tion of immune mechanisms, it is less clear what the broader con-
sequences of the operation of different immune mechanisms

might be. As a result of the differences in the underlying genetics,
different mechanisms—and their combinations—are also likely
to be associated with distinct coevolutionary dynamics (184, 185).
As well as affecting the extent to which bacteria are resistant to
their cooccurring phage populations, different coevolutionary dy-
namics can have correlated effects on the evolution of important
bacterial phenotypes. We first discuss what little we know about
coevolution resulting from the different immune mechanisms
and then discuss some of these broader consequences.

Coevolution with Different Immune Mechanisms

Surface modification. Many laboratory studies on bacterium-
phage coevolution report receptor modification-based resistance,
often using B strains and T phages of the model bacterium E. coli.
These studies show that coevolution in the laboratory takes place
in an asymmetrical fashion; i.e., the evolutionary potentials for
host and phage are different. This leads to resistance-conferring
host adaptations (e.g., receptor loss or modification), which can-
not be overcome by the phage on a short time scale. Loss of surface
receptors is generally not associated with coevolution (186, 187),
although phages could evolve to adapt to a novel receptor (1, 6). In
these cases, only one or a few cycles of resistance-infectivity coevo-
lution are typically seen, after which bacterial surface mutants
emerge, which the phage is unable to infect in the short term
(reviewed in reference 188). This is also seen in studies of coevo-
lution between the cyanobacterium Plectonema boryanum and its
cyanophage, LPP-1, which, after several rounds of coevolution,
typically resulted in full host resistance that could not be over-
come by the phage (189–191). One of the exceptions to this is the
coevolution between P. fluorescens and phage �2, where coevolu-
tion persists over long time spans, with bacteria modifying their
receptors in response to phage infection and phage evolving to

FIG 6 Spatial structure is an important fitness determinant for Abi, since it impacts relatedness. In the absence of phage, there will be selection against Abi
because of the cost of carrying the system. In a structured environment, the benefits of Abi are directed toward related individuals that also carry the Abi gene.
The phage will die out rapidly in the presence of Abi, while the phage will cause an epidemic in the absence of Abi (progeny phage is indicated in gray). In a
well-mixed environment, bacteria lacking the Abi system benefit from the altruistic defense of bacteria that encode the Abi system, but they do not pay the cost.
Both strains equally suffer from the epidemic that results from infection of bacteria that lack the Abi system. Empirical support for these findings was reported
previously (181–183).
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overcome bacterial resistance (192–194). By using this experi-
mental system, it was found that bacterium-phage coevolution
under high-nutrient conditions is associated with selective sweeps
that lead to the fixation of bacterial resistance phenotypes (192,
195) and novel phage phenotypes that carry mutations to over-
come bacterial resistance (196). This type of coevolution leads to
the evolution of genotypes with increasing ranges of resistance
(i.e., genotypes able to resist a wide range of phages) and infectiv-
ity (i.e., able to infect a wide range of bacterial hosts) and can be
described as an arms race (197). Later studies assessing the genet-
ics of bacterium-phage coevolution found that coevolving bacte-
ria often have numerous mutations in the genes encoding LPS, the
presumed �2 receptor (13). Phages that evolved toward general-
ism were found to carry a number of mutations in the phage tail
fiber genes (encoding proteins necessary for host receptor adsorp-
tion) (193, 194). While coevolution in nutrient-rich broth showed
arms race dynamics (at least initially [196]), ecological conditions
can change the dynamics. Specifically, lower nutrient levels result
in fluctuations in resistance and infectivity ranges through time
(198), while spatial structure results in temporal fluctuations in
the frequency of different specialist resistance and infectivity ge-
notypes (199, 200). These altered dynamics were associated with
costs of increasing resistance and infectivity ranges, which started
to outweigh the benefits when host-parasite encounter rates were
reduced by low nutrient levels and spatial structure.

Superinfection exclusion. Evidence that phages are able to
overcome superinfection exclusion comes from a study by Bailone
and Devoret, who examined the effect of the expression of the
superinfection repressor protein cI from phage � on the emer-
gence of virulent (i.e., lytic) phages. By increasing cI expression
levels in E. coli cells, phages insensitive to superinfection could be
readily isolated (201). These phages had accumulated mutations
in the phage � operator (oLoR), which, when bound by cI, keeps
the host cell in a lysogenic state and prevents the replication of a
superinfecting phage. However, compensatory mutations in the cI
gene can restore superinfection suppression (202). Based on these
studies, Berngruber et al. (203) generated a theoretical model that
suggests that virulence and superinfection exclusion can coevolve.
Virulent phages insensitive to superinfection can infect lysogens,
but their insensitivity to superinfection repression keeps them in a
virulent state, which can be costly for phages. As such, selection
can subsequently favor superinfection suppression through com-
pensatory mutations in the repressor (203).

Other Sie mechanisms rely on blocking phage DNA injection
(reviewed in reference 1). Mechanistic insight into how injection
blocking could evolve was provided by a study by Meyer et al. (6).
By using experimental evolution, this study followed the fate of
phage � that had evolved to recognize a novel receptor on the
surface of its E. coli bacterial host. After shifting receptor usage
(from LamB to OmpF), bacteria acquired resistance through mu-
tations in either the manY or the manZ gene. Both of these genes
encode the transmembrane channel of the ManXYZ mannose
permease, which is required for � DNA to cross the inner mem-
brane (204–206). Thus, these mutations conferred resistance by
blocking DNA transport of phage DNA, akin to some Sie mecha-
nisms.

Restriction-modification. In the short term (i.e., on ecological
time scales), coevolution associated with RM is usually short-
lived. Numerous studies have demonstrated the ability of RM sys-
tems to confer immunity against phages under laboratory condi-

tions (reviewed in reference 34). However, even though many RM
systems readily cleave unmodified phage DNA upon entry, there is
a 10�2 to 10�6 probability that phage will be “accidently” modi-
fied by the host MT, which renders all host cells carrying the same
RM system susceptible to that phage (207). This is likely to be a
coevolutionary dead end, as a host cannot overcome this immune
evasion in the short term. Hence, RM systems appear to be gener-
ally relatively unimportant for coevolution on ecological time
scales compared to rapidly evolving immune responses such as
surface modification or CRISPR-Cas. However, a recent theoret-
ical study suggested that higher RM diversity may allow the stable
coexistence of multiple bacterial strains due to the generation of
different epigenetic variants of a phage species (due to RM-medi-
ated modification of phage DNA) that restrict bacterial strains
from dominating the population (208). Rapid evolution of the
restriction site specificity of a type I RM system through DNA
inversions within the HsdS-encoding gene was first described
for Mycoplasma pulmonis (158), and similar mechanisms to rap-
idly alter type I RM specificity by DNA inversion appear to exist
in Streptococcus pneumoniae (209) and Bacteroides fragilis (157,
210). This could potentially lead to RM-based bacterium-
phage coevolution on ecological time scales.

Furthermore, over longer evolutionary time scales, coevolu-
tion between phages and RM systems takes place, as is evident
from the extensive array of strategies that phages have evolved to
avoid restriction (reviewed in references 211 and 212). Active eva-
sion of RM systems is seen, for example, for phages that encode
their own MTs (34, 213, 214). This ensures proper modification
and thereby protection of the phage genome against cleavage by
host REs that are compatible with that modification. Some phages
have evolved the ability to modify their own DNA by adding bulky
groups to it (213, 214). For example, coliphage Mu encodes a
protein (Mom) that modifies adenine residues by adding an acet-
amide group to it, thus protecting it against cleavage by a wide
range of REs (215). An intriguing example of a fierce coevolution-
ary arms race is seen for phage T4 and its host, E. coli K-12. Phage
T4 incorporates the unusual base hydroxymethylcytosine (HMC)
instead of a cytosine in its genome. As a response, hosts evolved
the ability to specifically recognize and cleave this modified DNA
(216), after which the phage evolved the ability to glucosylate its
already modified DNA. This resulted in the evolution of RM sys-
tems that specifically recognize glucosylated DNA. In turn, phages
evolved a strategy to inhibit these specialized RM systems, and
recently, bacterial proteins that block these phage inhibitors were
found (217). Phages can also encode proteins that mask recogni-
tion sites on the phage genome from host RE cleavage, for exam-
ple, the “defense against restriction” (Dar) proteins encoded by
coliphage M1 (218). Furthermore, several phages produce pro-
teins that mimic stretches of DNA, which then bind to REs with
high affinity, thereby blocking RE cleavage activity. A well-known
example of such a protein is the “overcome classical restriction”
(OCR) protein encoded by T7 phages (219), which binds to type I
RM systems by mimicking B-form DNA to prevent cleavage ac-
tivity. Similar types of mimicking proteins, named “alleviation of
restriction of DNA” (Ard) proteins, are encoded by a range of
plasmids, and these proteins also inhibit type I enzymes (220).
Selection on phage genomes to evade restriction has led to restric-
tion site avoidance in the phage genome (221). Furthermore, a
strand bias in T7 phages ensures that all type III recognition sites
are in the same orientation instead of the inverse orientation re-
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quired for cleavage, which leads to immunity evasion from type III
RM systems.

CRISPR-Cas. CRISPR-Cas-mediated immunity relies on a per-
fect sequence match between a spacer and a virus. As a conse-
quence, virus can overcome CRISPR-Cas-mediated resistance by
a simple point mutation in the target sequence. The high specific-
ity of the interaction between CRISPRs and escape viruses led to
predictions of persistent coevolution (149, 222, 223). However,
both theory and data show that CRISPR-virus coevolution can be
short-lived (149, 156).

Under some conditions, phage escape mutants can be readily
picked up under laboratory conditions (68, 224, 225), and meta-
genomics data show that escape phage can increase in abundance
in vivo (226–228). These associated mutations are typically located
in a confined sequence area: either in the PAM sequence or in the
adjacent seed sequence (68, 225, 229). The seed sequence is a 7- to
12-nt part of the protospacer immediately adjacent to the PAM
(225) and is thought to be the area where R-loop formation starts
(225, 230). Single or multiple point mutations in other parts of the
protospacer typically do not lead to phage escape from the im-
mune response (225). Type III CRISPR-Cas systems appear to be
generally more tolerant to mismatches, making it more difficult
for phage to overcome immunity by point mutation (231, 232). A
bioinformatics study showed that PAM sequences are underrep-
resented on phage genomes, probably as a result of CRISPR-me-
diated selection (233).

Under other conditions, phage cannot evolve to escape by
point mutation (156). What, then, determines the ability of phage
to escape CRISPR-Cas systems? Theory predicts that virus muta-
tion rates and host spacer acquisition rates are key factors during
CRISPR-virus coevolution (149). If bacterial host populations
generate high levels of spacer diversity, as is the case with P. aerugi-
nosa, the virus is driven extinct (156, 234). This is because the virus
can no longer evolve infectivity against the mix of host genotypes,
even though the same virus can rapidly evolve infectivity against
the individual clones in monoculture (156). This shows that
spacer diversity increases overall population resistance (herd im-
munity). The propensity to generate spacer diversity is therefore
an important fitness determinant of the CRISPR-Cas system. The
selective pressure imposed by diversity-generating CRISPR-Cas
systems may have driven the evolution of phage-borne anti-
CRISPR genes in many Pseudomonas phages (235, 236). Anti-
CRISPR proteins bind CRISPR-Cas components to interfere with
either target DNA recognition or DNA destruction (237). Anti-
CRISPRs are encoded by an extremely diverse set of genes that are
often located in a conserved locus on phage genomes (235, 236)
and other mobile genetic elements (153, 236).

Interestingly, in vitro long-term bacterium-phage evolution
experiments with Streptococcus thermophilus DGCC7710 and
phage D2972 revealed persistent coevolution, with phage acquir-
ing mutations in the PAM and the seed sequence and hosts acquir-
ing novel spacers (143, 144). How are these different dynamics
explained? It seems that S. thermophilus generates much less di-
versity (CRISPR populations are dominated by a single spacer
[143, 144; our unpublished data]), which is therefore predicted to
lead to ongoing coevolution (149). The lower levels of diversity
may be explained the requirement for a longer PAM by S. thermo-
philus CRISPR-Cas systems, which reduces the putative number
of protospacers by a factor of �10 compared to the P. aeruginosa
type I-F system. An increase in the mutation fixation rate by the

virus would also be expected to result in more persistent coevolu-
tion (137, 149).

Abortive infection. Similar to restriction-modification sys-
tems, coevolution between Abi systems and phage is less impor-
tant on short time scales. However, on a longer time scale, coevo-
lution between Abi systems and phages is evident, as phages have
several distinct strategies to evade Abi mechanisms (238, 239).
Cell death through the action of the above-mentioned ToxIN sys-
tem from P. atrosepticum can be circumvented by mutants of its
phage, �TE, that express molecules that mimic the antitoxin (238,
239). The Rex system (described above) can be circumvented by
phages that carry mutations in the motA gene (240). This gene
encodes a transcription factor that directs RNA polymerase from
the early to the middle promoters during the infection cycle, and
mutations in this gene likely allow phages to complete their repli-
cation cycle (211). Likewise, some phages are able to escape Lit
abortive infection mechanisms (see above). These phages carry
mutations in the grow on Lit (Gol) gene, which normally encodes
a peptide that activates the Lit system (241). For several of the
numerous Abi systems present in the lactococci (Lactococcus spe-
cies), phages that can overcome a particular Abi system have been
identified, although the exact mechanism by which they do so is in
most cases unknown (211).

Broader Consequences of Different Immune Mechanisms

The way in which bacteria evolve immunity against their viral
predators can have important implications. First, resistance
mechanisms can lead to different coevolutionary dynamics, which
can impact microbial community composition (and therefore
functioning). Phage can both increase host diversity by selecting
for host defense polymorphisms (e.g., see references 242 243) and
reduce diversity through population bottlenecking and selective
sweeps. Generally, coevolution characterized by fluctuating selec-
tion dynamics allows the maintenance of diversity, as different
genotypes coexist through negative-frequency-dependent selec-
tion (197). Arms race dynamics, on the other hand, results in low
diversity levels since it is associated with selective sweeps. Further-
more, as the continuous escalation of bacterial resistance and
phage virulence becomes increasingly costly, arms race dynamics
and fluctuating selection dynamics may also have different im-
pacts on microbial performance and virulence. As explained
above, the fitness cost associated with resistance depends on the
type of immune mechanism that evolves. For example, the acqui-
sition of CRISPR-Cas-mediated phage resistance is cost-free in the
absence of phage (133), but sm generally reduces bacterial fitness
(164, 244) and may affect host colonization or immune evasion
(245). Indeed, phage-mediated control of Flavobacterium psychro-
philum, a fish pathogen, resulted in surface mutants with attenu-
ated virulence (246). The human pathogen Vibrio cholerae lost the
ability to spread between patients after it acquired a surface mu-
tation that conferred resistance against phage (11), and an E. coli
strain infecting calves had greatly reduced virulence following re-
sistance evolution (247). Hence, understanding the conditions
under which different types of resistance evolve may therefore be
important for predicting pathogen virulence, particularly in light
of the resurgent interest in the therapeutic use of phages.

Apart from effects resulting from differences in coevolutionary
dynamics, resistance mechanisms can have a general impact on
microbial adaptation, including the evolution of virulence,
through their impact on microbial mutation rates and horizontal
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gene transfer. Viruses can select for bacteria with increased muta-
tion rates (248), which increases bacterial adaptability. However,
this effect may be reduced if the host carries a diversity-generating
immune mechanism. In addition, immune systems can also have
a long-term impact on microbial adaptation through their impact
on horizontal gene transfer. Several correlational studies indicate
that the CRISPR-Cas system limits gene transfer. For example,
genome sizes of strains of the opportunistic pathogen P. aerugi-
nosa, which often causes lung infections in cystic fibrosis patients,
are significantly smaller if they encode CRISPR-Cas systems than
if they lack CRISPR-Cas systems (153). In accordance, CRISPR-
Cas systems are absent from genomes of species that rely on gene
transfer, such as Streptococcus pneumoniae, which causes pneu-
monia and requires natural transformation for capsule switch-
ing during infection (177). Strains of Streptococcus pyogenes,
which causes pharyngitis, sepsis, and necrotizing fasciitis, are
more likely to carry prophage-encoded virulence factors (249,
250) if they lack CRISPR-Cas systems (177). Furthermore, the
presence of CRISPR-Cas immune mechanisms is inversely cor-
related with antibiotic resistance in Enterococcus faecium and
Enterococcus faecalis (176). Immune mechanisms can thus im-
pact adaptation and evolution of virulence in bacteria by block-
ing HGT.

Alternative Function of Immune Mechanisms

Apart from their role in immunity, defense systems are also in-
volved in other cellular processes. For example, the CRISPR-Cas
system has been reported to be involved in DNA repair as well as
the regulation of genes involved in virulence and group behaviors
(251–253). Usually, either cas genes or CRISPR arrays are involved
in these noncanonical functions, rather than the combined action
of both elements (252). Alternative roles for RM systems have also
been proposed (reviewed in reference 212). These roles include
stabilization of genomic islands, stimulating recombination and
genome rearrangements, and modulating the rate of genome evo-
lution. In addition, it has been hypothesized that type II RM sys-
tems may behave as selfish genetic elements (254, 255), in a fash-
ion similar to that of toxin-antitoxin addiction systems. To
increase their own frequency within the population, these systems
maintain themselves in the host through postsegregational killing
(32), a strategy that is used by a wide variety of selfish genetic
elements to render the cells dependent on (addicted to) the resid-
ing RM systems for survival. Like toxin-antitoxin systems, selfish
type II systems are generally associated with mobile elements,
which may allow them to easily invade new genomes (33). Theo-
retical modeling showed that spatial structuring is an important
factor in the spread of addiction systems such as type II RM and
TA systems (256). In a spatially structured environment, the fre-
quencies of these genetic elements are likely to increase but not in
an unstructured environment.

Although Sie protects hosts against phage infection, the ques-
tion of whether Sie systems are selected for their role in immunity
is a subject of ongoing debate. Sie systems encoded by temperate
phages prevent subsequent infection by similar phages and per-
haps primarily comprise a phage strategy to successfully compete
with other phages, known as “phage warfare.” That said, pro-
phage-encoded Sie systems can clearly benefit the host by either
providing immunity to other (potentially virulent) phages or en-
hancing the competitive abilities of the lysogen over prophage-
free hosts; in this context, prophages can be used as a “biological

weapon.” For example, several Salmonella enterica strains carry
prophages, and these populations produce low virus titers that are
sufficient to eliminate competing bacterial populations devoid of
such prophages (126, 257). However, this benefit disappears when
the competing bacteria also become lysogenized (258). The level
of lysogenization of sensitive competitors was shown to be much
reduced when the lysogens carry multiple prophages, and this was
associated with greatly increased host fitness when competing
with phage-sensitive bacteria compared to a lysogen carrying a
single prophage (259). The protective effect of lysogens may be key
to explaining the observed selection for temperate phages at high
bacterial densities (260).

APPLICATIONS, CONCLUSIONS, AND OUTLOOK

The ability to understand, predict, and manipulate the evolution
of bacterial immune mechanisms will be extremely powerful to
generate virus-resistant bacterial strains for use in industrial fer-
mentations, agriculture, and probiotics. The type of evolved resis-
tance could be tailored to minimize tradeoffs and unwanted co-
evolutionary consequences.

Apart from applications in industry, understanding bacterial
resistance evolution and coevolutionary consequences is also im-
portant for phage therapy. Specifically, the ability to expose bac-
teria to phages in a way that results in resistance evolution associ-
ated with large tradeoffs can reduce pathogen virulence or
potentially limit the acquisition of novel genes through horizontal
gene transfer. Understanding the conditions under which differ-
ent immune mechanisms evolve can therefore be important for
manipulating the evolution of pathogen virulence.

Taken together, it is becoming increasingly clear that ecologi-
cal factors are key for the evolution of distinct bacterial immune
mechanisms and bacterium-phage coevolution (188). Bioinfor-
matics analyses predict the existence of many more immune
mechanisms, often clustered together in defense islands (112).
One such mechanism, coined bacteriophage exclusion (BREX), is
widely distributed across bacteria and appears to share some
mechanistic features with RM systems (261). We are starting to
understand how all these different immune mechanisms work,
but the next challenge is to examine when these mechanisms are
favored over one another and how they are integrated during an-
tiviral responses.

Finally, as noted above, phages can encode a range of immune
strategies themselves and are likely important vectors for moving
these systems around between bacterial strains and species. In
addition to Sie mechanisms, phages have been found to carry RM
(262) and CRISPR-Cas (263) systems. Phage-encoded CRISPRs
can play key roles in phage-phage interactions (263) and in inter-
actions between phage and other genetic elements (264). Under-
standing how selection acts on diverse immune strategies will re-
quire their movement by phage to be explicitly taken into account.
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